Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 16633-16643, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458508

RESUMO

Bismuth oxyselenide (Bi2O2Se) is a two-dimensional (2D) layered semiconductor material with high electron Hall mobility and excellent environmental stability as well as strong spin-orbit interaction (SOI), which has attracted intense attention for application in spintronic and spin optoelectronic devices. However, a comprehensive study of spin photocurrent and its microscopic origin in Bi2O2Se is still missing. Here, the helicity-dependent photocurrent (HDPC) was investigated in Bi2O2Se nanosheets. By analyzing the dependence of HDPC on the angle of incidence, we find that the HDPC originates from surface states with Cs symmetry in Bi2O2Se, which can be attributed to the circular photogalvanic effect (CPGE) and circular photon drag effect (CPDE). It is revealed that the HDPC current almost changes linearly with the source-drain voltage. Furthermore, we demonstrate effective tuning of HDPC in Bi2O2Se by ionic liquid gating, indicating that the spin splitting of the surface electronic structure is effectively tuned. By analyzing the gate voltage dependence of HDPC, we can unambiguously identify the surface polarity and the surface electronic structure of Bi2O2Se. The large HDPC in Bi2O2Se nanosheets and its efficient electrical tuning demonstrate that 2D Bi2O2Se nanosheets may provide a good platform for opto-spintronics devices.

2.
Opt Express ; 31(9): 14473-14481, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157311

RESUMO

A persistent spin helix with equal strength of the Rashba and Dresselhaus spin-orbit coupling (SOC) is expected for future spintronic devices due to the suppression of spin relaxation. In this work we investigate the optical tuning of the Rashba and Dresselhaus SOC by monitoring the spin-galvanic effect (SGE) in a GaAs/Al0.3Ga0.7As two dimensional electron gas. An extra control light above the bandgap of the barrier is introduced to tune the SGE excited by a circularly polarized light below the bandgap of GaAs. We observe different tunability of the Rashba- and Dresselhaus-related SGE currents and extract the ratio of the Rashba and Dresselhaus coefficients. It decreases monotonously with the power of the control light and reaches a particular value of ∼-1, implying the formation of the inverse persistent spin helix state. By analyzing the optical tuning process phenomenologically and microscopically, we reveal greater optical tunability of the Rashba SOC than that of the Dresselhaus SOC.

3.
Cancer Immunol Immunother ; 72(3): 647-664, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36036290

RESUMO

CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Humanos , Prognóstico , Linfócitos T CD8-Positivos , Algoritmos , Neoplasias Pancreáticas
5.
J Phys Chem Lett ; 13(50): 11689-11695, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36512319

RESUMO

A spin-related photocurrent excited by circularly polarized light is observed near the electrodes on a few-layer ReS2 sample at room temperature. For both electrodes, the spatial distribution of the spin photocurrent shows a feature of two wings, with one positive and the other negative. In this work, it is suggested that this phenomenon arises from the inverse spin Hall effect due to the local electric field near the electrode. Bias voltage that modulates this field further controls the sign and magnitude of the spin photocurrent. Our research shows that the electric field near the electrodes has a significant impact on the spin transmission operation, and hence it could be taken into account for manufacturing spintronic devices in the future.

6.
Opt Express ; 30(9): 15085-15095, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473239

RESUMO

The photoinduced inverse spin Hall effect (PISHE) has been studied in three dimensional (3D) topological insulator (TI) Bi2Te3 thin films with different thicknesses (3, 5, 12 and 20 quintuple layer (QL)). The sign of the PISHE current flips only once in the 3- and 20-QL Bi2Te3 films, but it flips three times in the 5-, 7- and 12-QL samples. The three-times sign flip is due to the superposition of the PISHE current of the top and bottom surface states in Bi2Te3 films. By analyzing the x-ray photoelectron spectroscopy (XPS) of the Bi2Te3 films, we find that the top surface of the 3- and 20-QL Bi2Te3 films are severely oxidized, leading to only one sign flip in the PISHE. The PISHE contributed by the top and bottom surface states in Bi2Te3 films have been successfully separated by fitting a theoretical model to the PISHE current. The impact of the bulk states on PISHE current has been determined. The PISHE current is also measured at different light powers, and all the measurement results are in good agreement with the theoretical model. In addition, it is found that the PISHE current in Bi2Te3 films grown on Si substrate is more than two orders larger than that grown on SrTiO3 substrates, which can be attributed to the larger absorption coefficient for Bi2Te3/Si samples. It is revealed that the PISHE current in 3D TI Bi2Te3 is as large as 140 nA/W in the 3-QL Bi2Te3 film grown on Si substrate, which is more than one order larger than that reported in GaAs/AlGaAs heterojunction (about 2 nA/W) and GaN/AlGaN heterojunction (about 1.7 nA/W). The giant PISHE current demonstrates that the TIs with strong SOC may have good application prospects in spintronic devices with high spin-to-charge conversion efficiency.

7.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009939

RESUMO

Circularly polarized photocurrent, observed in p-doped bulk GaAs, varies nonlinearly with the applied bias voltage at room temperature. It has been explored that this phenomenon arises from the current-induced spin polarization in GaAs. In addition, we found that the current-induced spin polarization direction of p-doped bulk GaAs grown in the (001) direction lies in the sample plane and is perpendicular to the applied electric field, which is the same as that in GaAs quantum well. This research indicates that circularly polarized photocurrent is a new optical approach to investigate the current-induced spin polarization at room temperature.

8.
Cancer Cell Int ; 21(1): 621, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819088

RESUMO

BACKGROUND: The aim of this study was to construct a model based on the prognostic features associated with epithelial-mesenchymal transition (EMT) to explore the various mechanisms and therapeutic strategies available for the treatment of metastasis and invasion by hepatocellular carcinoma (HCC) cells. METHODS: EMT-associated genes were identified, and their molecular subtypes were determined by consistent clustering analysis. The differentially expressed genes (DEGs) among the molecular subtypes were ascertained using the limma package and they were subjected to functional enrichment analysis. The immune cell scores of the molecular subtypes were evaluated using ESTIMATE, MCPcounter, and GSCA packages of R. A multi-gene prognostic model was constructed using lasso regression, and the immunotherapeutic effects of the model were analyzed using the Imvigor210 cohort. In addition, immunohistochemical analysis was performed on a cohort of HCC tissue to validate gene expression. RESULTS: Based on the 59 EMT-associated genes identified, the 365-liver hepatocellular carcinoma (LIHC) samples were divided into two subtypes, C1 and C2. The C1 subtype mostly showed poor prognosis, had higher immune scores compared to the C2 subtype, and showed greater correlation with pathways of tumor progression. A four-gene signature construct was fabricated based on the 1130 DEGs among the subtypes. The construct was highly robust and showed stable predictive efficacy when validated using datasets from different platforms (HCCDB18 and GSE14520). Additionally, compared to currently existing models, our model demonstrated better performance. The results of the immunotherapy cohort showed that patients in the low-risk group have a better immune response, leading to a better patient's prognosis. Immunohistochemical analysis revealed that the expression levels of the FTCD, PON1, and TMEM45A were significantly over-expressed in 41 normal samples compared to HCC samples, while that of the G6PD was significantly over-expressed in cancerous tissues. CONCLUSIONS: The four-gene signature construct fabricated based on the EMT-associated genes provides valuable information to further study the pathogenesis and clinical management of HCC.

9.
Front Cell Dev Biol ; 9: 686664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631695

RESUMO

Background: The prognosis of patients with hepatocellular carcinoma (HCC) is negatively affected by the lack of effective prognostic indicators. The change of tumor immune microenvironment promotes the development of HCC. This study explored new markers and predicted the prognosis of HCC patients by systematically analyzing immune characteristic genes. Methods: Immune-related genes were obtained, and the differentially expressed immune genes (DEIGs) between tumor and para-cancer samples were identified and analyzed using gene expression profiles from TCGA, HCCDB, and GEO databases. An immune prognosis model was also constructed to evaluate the predictive performance in different cohorts. The high and low groups were divided based on the risk score of the model, and different algorithms were used to evaluate the tumor immune infiltration cell (TIIC). The expression and prognosis of core genes in pan-cancer cohorts were analyzed, and gene enrichment analysis was performed using clusterProfiler. Finally, the expression of the hub genes of the model was validated by clinical samples. Results: Based on the analysis of 730 immune-related genes, we identified 64 common DEIGs. These genes were enriched in the tumor immunologic related signaling pathways. The first 15 genes were selected using RankAggreg analysis, and all the genes showed a consistent expression trend across multi-cohorts. Based on lasso cox regression analysis, a 5-gene signature risk model (ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1) was constructed. The signature has strong robustness and can stabilize different cohorts (TCGA-LIHC, HCCDB18, and GSE14520). Compared with other existing models, our model has better performance. CIBERSORT was used to assess the landscape maps of 22 types of immune cells in TCGA, GSE14520, and HCCDB18 cohorts, and found a consistent trend in the distribution of TIIC. In the high-risk score group, scores of Macrophages M1, Mast cell resting, and T cells CD8 were significantly lower than those of the low-risk score group. Different immune expression characteristics, lead to the different prognosis. Western blot demonstrated that ATG10, PRKCD, and SPP1 were highly expressed in cancer tissues, while IL18RAP and SLC11A1 expression in cancer tissues was lower. In addition, IL18RAP has a highly positive correlation with B cell, macrophage, Neutrophil, Dendritic cell, CD8 cell, and CD4 cell. The SPP1, PRKCD, and SLC11A1 genes have the strongest correlation with macrophages. The expression of ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1 genes varies among different immune subtypes and between different T stages. Conclusion: The 5-immu-gene signature constructed in this study could be utilized as a new prognostic marker for patients with HCC.

10.
World J Gastrointest Surg ; 13(1): 87-95, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33552396

RESUMO

BACKGROUND: Anastomosis of the testicular vein with the superior mesenteric vein rarely causes severe gastrointestinal bleeding. To date, there have been few studies describing its appearance on medical imaging. Here, we present multidetector computed tomography three-dimensional and multiplanar reconstruction (MPR) images of a typical digital subtraction angiography showing proven ectopic bleeding and provide the first review of the image performance. CASE SUMMARY: A 68-year-old man who had been rushed to the hospital with a four-day history of melena and fainting underwent multiple esophagogastroduodenoscopy procedures that failed to identify the source of bleeding. We used MPR combined with three-dimensional reconstruction images, and found that the testicular vein had anastomosed with the superior mesenteric vein, and they clustered together in the jejunal vessel wall, which caused severe gastrointestinal bleeding. Digital subtraction angiography confirmed the location of bleeding. After transfusion and embolization therapy, the patient's condition improved. CONCLUSION: Computed tomography-MPR combined with three-dimensional images offers significant value in the localization and qualitative assessment of rare gastrointestinal hemorrhage. The features of multiphase spiral scanning can improve the accuracy of the diagnosis.

11.
Front Oncol ; 11: 759586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976806

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a malignant tumor of the digestive system that is associated with a poor prognosis in patients owing to its rapid progression and high invasiveness. METHODS: Ninety-seven invasive-related genes obtained from the CancerSEA database were clustered to obtain the molecular subtype of pancreatic cancer based on the RNA-sequencing (RNA-seq) data of The Cancer Genome Atlas (TCGA). The differentially expressed genes (DEGs) between subtypes were obtained using the limma package in R, and the multi-gene risk model based on DEGs was constructed by Lasso regression analysis. Independent datasets GSE57495 and GSE62452 were used to validate the prognostic value of the risk model. To further explore the expression of the hub genes, immunohistochemistry was performed on PAAD tissues obtained from a large cohort. RESULTS: The TCGA-PAAD samples were divided into two subtypes based on the expression of the invasion-related genes: C1 and C2. Most genes were overexpressed in the C1 subtype. The C1 subtype was mainly enriched in tumor-related signaling pathways, and the prognosis of patients with the C1 subtype was significantly worse than those with the C2 subtype. A 3-gene signature consisting of LY6D, BCAT1, and ITGB6 based on 538 DEGs between both subtypes serves as a stable prognostic marker in patients with pancreatic cancer across multiple cohorts. LY6D, BCAT1, and ITGB6 were over-expressed in 120 PAAD samples compared to normal samples. CONCLUSIONS: The constructed 3-gene signature can be used as a molecular marker to assess the prognostic risk in patients with PAAD.

12.
Cancer Manag Res ; 12: 4369-4377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606932

RESUMO

PURPOSE: The aim of this study was to evaluate the efficacy and safety of hormonal and synchronous docetaxel plus prednisone (DocP) in metastatic hormone-sensitive prostate cancer (mHSPC). METHODS: One hundred fifty-one cases with high-burden mHSPC diagnosed at 1 single center from January 2014 to August 2018 were analyzed retrospectively. Among them, 85 cases received androgen-deprivation therapy (ADT) within 3 months, along with 6 cycles of docetaxel + prednisone (treatment group), whereas 66 received ADT alone (control group). The primary end point was the median overall survival (OS), while the secondary outcomes included prostate-specific antigen (PSA) progression-free survival (PFS), radiographic PFS, and the proportion of PSA falling to 0.2 ng/mL. RESULTS: A total of 151 patients were included and followed up for a median of 34 months in this study. The median OS time in the treatment group was unavailable, but it was remarkably longer than that of the control group (P<0.001). In addition, the PFS of PSA in the treatment group and control group was 17.9 months and 9.2 months, respectively (P<0.001). Meanwhile, the radiographic PFS was 43 months in the treatment group and 19.8 months in the control group, respectively (P<0.001). The proportions of PSA falling to 0.2 ng/mL were 53.7% and 23.3%, respectively (P<0.001). However, there was no significant difference in the incidence of ≥3 toxic side effects between these 2 groups (P=0. 21). CONCLUSION: ADT combined with 6 cycles of docetaxel + prednisone chemotherapy benefits patients diagnosed with high-burden mHSPC in terms of the OS, PFS of PSA and radiographic, and the ratio of PSA falling to 0.2 ng/mL.

13.
ACS Appl Mater Interfaces ; 12(15): 18091-18100, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212669

RESUMO

The circular photogalvanic effect (CPGE) provides a method utilizing circularly polarized light to control spin photocurrent and will also lead to novel opto-spintronic devices. The CPGE of three-dimensional topological insulator Bi2Te3 with different substrates and thicknesses has been systematically investigated. It is found that the CPGE current can be dramatically tuned by adopting different substrates. The CPGE current of the Bi2Te3 films on Si substrates are more than two orders larger than that on SrTiO3 substrates when illuminated by 1064 nm light, which can be attributed to the modulation effect due to the spin injection from Si substrate to Bi2Te3 films, larger light absorption coefficient, and stronger inequivalence between the top and bottom surface states for Bi2Te3 films grown on Si substrates. The excitation power dependence of the CPGE current of Bi2Te3 films on Si substrates shows a saturation at high power especially for thicker samples, whereas that on SrTiO3 substrates almost linearly increases with excitation power. Temperature dependence of the CPGE current of Bi2Te3 films on Si substrates first increases and then decreases with decreasing temperature, whereas that on SrTiO3 substrates changes monotonously with temperature. These interesting phenomena of the CPGE current of Bi2Te3 films on Si substrates are related to the spin injection from Si substrates to Bi2Te3 films. Our work not only intrigues new physics but also provides a method to effectively manipulate the helicity-dependent photocurrent via spin injection.

14.
J Phys Chem Lett ; 11(3): 927-934, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31957447

RESUMO

High power conversion efficiency can be realized by using a ternary bulk heterojunction with complementary absorption spectra in organic solar cells. However, as the development of nonfullerene acceptors with a broad absorption spectrum makes the absorption efficiency of the photovoltaic devices close to optimal, such a strategy needs modifying. In particular, charge transfer between the two acceptors is necessary to be considered. Herein, we purposely design a ternary system based on PTB7-Th:COi8DFIC:ITIC-4F. Though the presence of ITIC-4F in PTB7-Th:COi8DFIC could not broaden the absorption spectrum obviously, the formed cascade-energy-level alignment is beneficial for promoting and balancing exciton separation and charge transport between the donor and two acceptors and even between the acceptors. Insights into the charge transport route in the completed system are provided via using the techniques including photoluminescence spectroscopy and pump-probe photoconductivity spectroscopy. This work provides a new idea for designing highly efficient ternary organic solar cells.

15.
ACS Appl Mater Interfaces ; 11(3): 3299-3307, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30589524

RESUMO

Although ternary polymer solar cells have more potential in realizing a high power conversion efficiency than the binary counterparts, the mechanism of exciton separation and charge transport in such complicated ternary systems is far from being understood. Herein, we focus on this issue and give a clear view on the detailed roles of the ternary components contributing to the device performance, through utilizing the technique of pump-probe photoconductivity spectroscopy combined with transient photoluminescence spectroscopy, for the first time for ternary polymer solar cells. The ternary photovoltaic devices are based on PBDB-T:ITIC:PC71BM and present a dramatic improvement in efficiency in comparison to that of the binary counterparts. Systematic investigation reveals that the excitons generated in ITIC could be separated at the interface of PBDB-T:ITIC rather than ITIC:PC71BM with holes injecting to PBDB-T. These holes together with those generated in PBDB-T contribute to the photocurrent of the devices. The aggregation of holes in PBDB-T would also weaken the exciton generation herein, and the electron injection to PC71BM and ITIC would also be influenced. The key role of PC71BM in the ternary devices is accepting the electrons from PBDB-T and transporting them to the cathode with a higher rate than that of ITIC. Thus, this article is of importance in constructing high-efficiency ternary polymer solar cells.

16.
Nanoscale Res Lett ; 13(1): 320, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30315428

RESUMO

The inverse spin Hall effect induced by circularly polarized light has been observed in a GaAs/AlGaAs two-dimensional electron gas. The spin transverse force has been determined by fitting the photo-induced inverse spin Hall effect (PISHE) current to a theoretical model. The PISHE current is also measured at different light power and different light spot profiles, and all the measurement results are in good agreement with the theoretical calculations. We also measure the PISHE current at different temperatures (i.e., from 77 to 300 K). The temperature dependence of the PISHE current indicates that the extrinsic mechanism plays a dominant role, which is further confirmed by the weak dependence of the PISHE current on the crystal orientation of the sample.

17.
Nanoscale Res Lett ; 13(1): 102, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654517

RESUMO

Asymmetric resistive switching processes were observed in BaTiO3/Nb:SrTiO3 epitaxial heterojunctions. The SET switching time from the high-resistance state to low-resistance state is in the range of 10 ns under + 8 V bias, while the RESET switching time from the low-resistance state to high-resistance state is in the range of 105 ns under - 8 V bias. The ferroelectric polarization screening controlled by electrons and oxygen vacancies at the BaTiO3/Nb:SrTiO3 heterointerface is proposed to understand this switching time difference. This switch with fast SET and slow RESET transition may have potential applications in some special regions.

18.
Opt Express ; 26(4): 4832-4841, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475328

RESUMO

The inverse spin Hall effect (ISHE) induced by the normal incidence of linearly-polarized infrared radiation has been observed in the topological insulator Bi2Se3. A model has been proposed to explain the phenomenon, and the spin transverse force has been determined by the model fitting. The anomalous linear photogalvanic effect (ALPGE) is also observed, and the photoinduced momentum anisotropy is extracted. Furthermore, the ISHE and ALPGE are investigated at different temperatures between 77 and 300 K, and the temperature dependence of the spin transverse force and photoinduced momentum anisotropy are obtained. This study suggests a new way to investigate the inverse spin Hall effect via linearly polarized light even at room temperature.

19.
Nano Lett ; 17(12): 7878-7885, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29141404

RESUMO

The three-dimensional (3D) topological insulator (TI) Bi2Se3 exhibits topologically protected, linearly dispersing Dirac surface states (SSs). To access the intriguing properties of these SSs, it is important to distinguish them from the coexisting two-dimensional electron gas (2DEG) on the surface. Here, we use circularly polarized light to induce the inverse spin Hall effect in a Bi2Se3 thin film at different temperatures (i.e., from 77 to 300 K). It is demonstrated that the photoinduced inverse spin Hall effect (PISHE) of the top SSs and the 2DEG can be separated based on their opposite signs. The temperature and power dependence of the PISHE also confirms our method. Furthermore, it is found that the PISHE in the 2DEG is dominated by the extrinsic mechanism, as revealed by the temperature dependence of the PISHE.

20.
Sci Rep ; 7: 40558, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084437

RESUMO

In the absent of magnetic field, we have observed the anisotropic spin polarization degree of photoconduction (SPD-PC) in (Ga,Mn)As/GaAs heterojunction. We think three kinds of mechanisms contribute to the magnetic related signal, (i) (Ga,Mn)As self-producing due to the valence band polarization, (ii) unequal intensity of left and right circularly polarized light reaching to GaAs layer to excite unequal spin polarized carriers in GaAs layer, and (iii) (Ga,Mn)As as the spin filter layer for spin transport from GaAs to (Ga,Mn)As. Different from the previous experiments, the influence coming from the Zeeman splitting induced by an external magnetic field can be avoided here. While temperature dependence experiment indicates that the SPD-PC is mixed with the magnetic uncorrelated signals, which may come from current induced spin polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...